

A Minimal State Augmentation Algorithm for Vision-Based Navigation Without Using Mapped Landmarks

10th International ESA Conference on Guidance and Control Systems

Salzburg, Austria 29 May, 2 June, 2017

A. Miguel San Martin

Dr. David S. Bayard, Dylan T. Conway, Dr. Milan Mandic, Erik S. Bailey

Relative Vision-Based Navigation

Existing algorithms assuming standard sensor suite (IMU, camera, altimeter):

- Simultaneous Localization and Mapping (SLAM)
 - Requires the augmentation of the estimated state vector by 3xN states, where N is the number of tracked features
 - Large number of on-board computations
 - Numerical instability issues
 - Requires motion to solve for the feature locations and compute vehicle delta-pose
- Optical Flow, Epipolar Plane
 - Requires motion to solve for delta-pose

Proposed Vision-Based Navigation

- This paper will describe MAVeN (Minimal State Augmentation Algorithm for Vision-Based Navigation), an algorithm for Absolute and Relative Vision-Based Navigation
 - The motivation, assumptions, architecture, derivation, and its performance

Major Assumptions of MAVeN

- We know the surface we are going to perform proximity operations and land on
 - We have an on-board Shape Model (DEM, Facets, ...) of the surface
- We have a good initial estimate of the spacecraft state in the body frame
 - Attitude provided by Star Tracker and rotational model of the natural body
 - Position provided by Ground Navigation or Absolute Visual-Based Navigation
- Note: The need for the Shape Model and the position knowledge assumption can be relaxed if the surface can be approximated by a planar surface

Major Design Feature of MAVeN

- Base Frame feature locations are projected onto the Shape Model of the body surface to generate Pseudo-Landmarks which are tracked in following Tracking Frames in order to generate a delta-pose measurement
- The error in the location of the Pseudo-Landmarks are represented in the partials of the measurement matrix using the local surface slopes, also included in the Shape Model

Filter Architecture

Filter Performance

Test Scenario

- Vertical descent from 1000 to 10m.
- Constant deceleration from 20 m/sec to 0 m/sec
- Constant attitude

Sensors

- MIMU class IMU
- Camera: 60deg FOV, 1000x1000 pixels with a 0.5Hz update
- Feature centroiding error of 2 pixels
- LIDAR Altimeter: 0.5m error at 5Hz

MAVeN

- Translation Only (MAVeN-T)
- Attitude and Translation (MAVeN-AT)
- Planar Surface Assumption

Truth Terrain Model

Results

Results (Cont.)

Case	Horizontal Velocity Error		Vertical Velocity Error		Horizontal Position Error	
	MAVEN-AT	MAVEN-T	MAVEN-AT	MAVEN-T	MAVEN-AT	MAVEN-T
Case 1	$0.71~\mathrm{cm/s}$	$0.73 \mathrm{\ cm/s}$	$0.30~\mathrm{cm/s}$	$0.30~\mathrm{cm/s}$	$0.57 \mathrm{\ m}$	$3.39 \mathrm{\ m}$
Case 2	$0.58~\mathrm{cm/s}$	$0.46~\mathrm{cm/s}$	$0.34~\mathrm{cm/s}$	$0.34~\mathrm{cm/s}$	2.35 m	2.58 m
Case 3	$1.73 \mathrm{\ cm/s}$	$0.49~\mathrm{cm/s}$	$0.44~\mathrm{cm/s}$	$0.40~\mathrm{cm/s}$	10.41 m	2.48 m
Case 4	$2.49 \mathrm{\ cm/s}$	$0.60~\mathrm{cm/s}$	$0.47~\mathrm{cm/s}$	$0.48 \mathrm{~cm/s}$	19.07 m	3.20 m
Case 5	$4.62~\mathrm{cm/s}$	$0.48~\mathrm{cm/s}$	$0.44~\mathrm{cm/s}$	$0.38~\mathrm{cm/s}$	32.85 m	8.70 m

Vision Compute Element for Mars 2020 TRN

Flight RAD750 Processor (3U)

Flight-qualified power card (6U)

6U cPCI chassis and backplane

Computer Vision Accelerator Card (CVAC) (6U)

The Vision Compute Element (VCE) is a 3 slot 6U processor with a RAD750 general purpose processor, a power conditioning card (CEPCU1) and a Virtex5 enabled Computer Vision Accelerator Card (CVAC).

Gyroless Feature Tracker Field Test

MAVeN Real Time Test - Tracking Wall

MAVeN Potential Applications

Conclusions

- A new algorithm was developed combining Absolute and Relative Vision-Based Navigation, LIDAR altimeter, and IMU
- MAVeN's major architectural feature is the ability to do Feature Tracking with a minimum augmentation of the state vector
 - Requires a shape model and good initial knowledge of vehicle pose relative to the surface

or

- A surface that can be approximated by a plane
- Performance of the filter for the planar surface assumption case was evaluated with different surface model errors and the results are very encouraging